

ANÁLISIS DE DATOS ESTADÍSTICOS

Francisco Sáez - <u>www.pacosaez.es</u>
Calle altamira 55, Almería 950 265 711
www.gestionformacion.es

ESQUEMA DE INFERENCIA ESTADÍSTICA

Nivel de confianza $(1 - \alpha)$. Se suelen utilizar los valores 0,9, 0,95 o 0,99. Por defecto: 0,95. Nivel de significación o de error (α) . Se utilizan los valores 0,1, 0.05 o 0,01. Por defecto: 0.05

Sirve para calcular	Distribución de probabilidad	Fórmulas estadísticas	A tener en cuenta
¿Entre qué valores se encuentra la variable "x" con una confianza del 100(1 – α) % ?	$X \sim N(\mu, \sigma) \Rightarrow$ $\Rightarrow Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$	$X \in [x_1, x_2] \text{ con}$ una certeza del $100(1-\alpha) \%$ donde $x_1 = \mu + z_1 . \sigma$ $x_2 = \mu + z_2 . \sigma$	 Tendremos solo una variable (no una muestra). Nos tienen que dar la media μ y la desviación típica σ de la población.
¿Entre qué valores se encuentra la media poblacional (μ) con con una confianza del $100(1-\alpha)\%$? Intervalo de confianza para μ	$\bar{x}_{n} \sim N(\mu, \sigma/\sqrt{n}) \Rightarrow$ $\Rightarrow Z = \frac{\bar{x}_{n} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$	$\mu \in [\mu_1, \mu_2] \text{ con}$ una certeza del $100(1-\alpha)\%$ donde $\mu_1 = \bar{x}_n - z_2 \cdot \sigma/\sqrt{n}$ $\mu_2 = \bar{x}_n - z_1 \cdot \sigma/\sqrt{n}$	 Tendremos una muestra de n variables. Las variables tienen que ser independientes y seguir una distribuciór normal con los mismos parámetros o bien n grande y v. independientes con la misma media y varianza. Nos tienen que dar la desviación típica n de la población, el tamaño de la muestra (n) y la media de la muestra (x̄_n) o medio para calcularla.
¿Cuál es el tamaño de la muestra para que con una confianza del $100(1-\alpha)\%$ el error al estimar la media de la coblación no supere una cantidad c ?	$\bar{x}_{n} \sim N(\mu, \sigma/\sqrt{n}) \Rightarrow$ $\Rightarrow Z = \frac{\bar{x}_{n} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$		 ✓ Tendremos una muestra de n variables. ✓ Las variables tienen que ser independientes y seguir una distribución normal con los mismos parámetros o bien n grande, y v. independientes con la misma media y varianza. ✓ Nos tienen que dar la desviación típica n de la población y el error en la estimación (c). ✓ Si nos piden que el error en la estimación sea igual a un valor, despejaríamos a partir de

CONTRASTES DE HIPÓTESIS

 α =P(Error tipo I)=P(Rechazar H_0 / H_0 es cierta) = Nivel de significación del contraste. β =P(Error tipo II)=P(No rechazar H_0 / H_0 es falsa). La potencia del contraste es $1-\beta$.

Sirve para responder	Contraste de hipótesis	Estadístico del contraste	Zona de rechazo (región crítica) o de aceptación	A tener en cuenta
¿Se puede afirmar que la media poblacional μ es igual a un valor μ_0 ?	$H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0$ C. bilateral	$Z_{exp} = \frac{\bar{x}_n - \mu_0}{\sigma / \sqrt{n}}$	Si $Z_{exp} \notin [z_1, z_2]$ rechazamos H_0 Si $Z_{exp} \in [z_1, z_2]$ no rechazamos H_0	 ✓ Tendremos una muestra de n variables. ✓ Las variables tienen que ser independientes y seguir una distribución normal con los mismos parámetros o bien n grande y v. independientes con la misma media y varianza. ✓ Nos tienen que dar la desviación típica σ de la población, el
¿Se puede afirmar que la media poblacional μ no supera un valor μ_0 ?	$H_0: \mu \leq \mu_0$ $H_1: \mu > \mu_0$ C. Unilateral	$Z_{exp} = \frac{\bar{x}_n - \mu_0}{\sigma / \sqrt{n}}$	Si $Z_{exp} \notin [-\infty, z_1]$ rechazamos H_0 Si $Z_{exp} \in [-\infty, z_1]$ no rechazamos H_0	tamaño de la muestra (n) y la media de la muestra (\bar{x}_n) o medios para calcularla.
¿Se puede afirmar que la media poblacional μ es como mínimo un valor μ_0 ?	$H_0: \mu \geq \mu_0$ $H_1: \mu < \mu_0$ C. Unilateral	$Z_{exp} = \frac{\bar{x}_n - \mu_0}{\sigma / \sqrt{n}}$	Si $Z_{exp} \notin [z_1, +\infty]$ rechazamos H_0 Si $Z_{exp} \in [z_1, +\infty]$ no rechazamos H_0	

